Hack a Day

Subscribe to Hack a Day feed Hack a Day
Fresh hacks every day
Updated: 16 min 2 sec ago

The N64 Controller Gets Brass Gears Through 3D Printing

1 hour 45 min ago

The controller for the Nintendo 64 is a masterpiece of design, and despite being more than two decades old, people are still using this controller competitively. Smash Bros, you know. Those competitive gaming enthusiasts are hard on their controllers, and after decades and tournaments, the analog stick will wear out. Previously, this required a rebuild or simply replacing the entire controller. Now there’s another option: a completely re-engineered analog stick, all made possible thanks to 3D printing.

[Nam Le] is a student at Cal Poly, and as would be expected for a very specific subset engineering students, had to track down new N64 controller every few months. The stick on these controllers wear out, so [Nam] decided to make the most durable joystick that has ever fit inside an N64 controller.

The design of the N64 stick is pretty simple, and exactly what you would expect if you’ve ever opened up an analog joystick. There’s the stick itself, which is connected to gears on the X and Y axes, which are in turn connected to encoders. This entire assembly sits in a bowl. After twenty years, the mating surface between the stick and the gears wear down, and the bowl becomes deformed. The solution here is obviously to engineer something sturdier, and despite what most of the 3D printing community will tell you, ABS and PLA just won’t cut it.

[Nam] re-designed the gears and bowl out of brass using lost-wax casting using 3D printed parts. These brass parts were mated with 3D printed gears and an enclosure for the bowl. The stick is nylon, an important design choice because this is the first part to wear down anyway, and it’s also the easiest part to replicate. Yes, this is designing an analog stick for the strength of materials and Real Engineering for those of you keeping track at home.

Right now, the joystick works as intended, and lasts much longer than the stock version. The goal now is to get this stick tournament-legal for some serious Smash time, in the hopes of not replacing controllers every few months.

555 Timer Robots Will Rule The World

4 hours 45 min ago

A running joke we see in the comments by Hackaday readers whenever a project includes an Arduino or Raspberry Pi that seems like overkill is to proclaim that “I could have done it with a 555 timer!” That’s especially the case if the project amounts to a blinking light or anything which oscillates. Well [Volos Projects] has made a whole robot out of a 555 timer circuit.

Okay, it’s really a dead bug circuit in the shape of a robot but it does have blinking lights. We also like how the base is the battery, though some unevenness under it seems to make the whole thing a bit unstable as you can see in the video below. There are also a few parts which are cosmetic only. But it’s cute, it’s a 555 timer circuit, and it’s shaped like a robot. That all makes it a win.

We do wonder how it can be taken further. After all, a walk cycle is a sort of oscillation so the 555 timer circuit could run some servo motors or at least some piezoelectric feet. Ideas anyone?

On the other hand, if you’re looking for a dead bug circuit which belongs in a fine arts museum then you need look no further than The Clock.

New Part Day: Put An Alexa In Everything

7 hours 45 min ago

The last great hope for electronics manufactures is smart home assistants. The Alexas and Siris and OK Googles are taking over homes across the country. At its best, it’s HAL 9000, only slightly less homicidal. It will entertain your children, and you can order cat litter just by saying you want cat litter. This is the future, whether we like it or not.

In an attempt to capture the market, Amazon has released the Alexa Connect Kit. This is an Amazon-Echo-On-a-Chip — a piece of hardware that adds Alexa to microwaves, blenders, and whatever other bit of home electronics you can imagine.

The Alexa Connect Kit is the hardware behind Amazon’s efforts to allow developers easy integration with Alexa. The options for adding Alexa to a product up until now have been using Zigbee to connect an Echo Show or Echo Plus, or simply giving a device the ability to connect to an Echo through Bluetooth. The Alexa Connect Kit, however, is a pure hardware solution that puts Alexa in anything.

Unfortunately you can’t get one yet. Right now, the Alexa Connect Kit is just a preview, and if you want to get your hands on one — or get any specs on this bit of hardware — you’ll need to apply to the developer program. We’ve signed up and will share and juicy details that come our way as part of the program.

According to the Wall Street Journal (try Google referral link if you hit the pay wall), several companies are already working on integrating the Alexa Connect Kit into their existing product lines. Hamilton Beach and Procter & Gamble are both working on something, although the press doesn’t say what kind of device will now be loaded up with a voice assistant. Amazon, however, has a microwave using the technology that the owner can, “command the microwave to do things like defrost a half-pound of chicken, or set it up to automatically reorder a favorite type of popcorn on Amazon”.

Despite the sparse details, this is relatively game-changing when it comes to the world of homebrew electronics. We’ve seen dozens of projects using hacked Raspberry Pis and other microcontrollers to at Alexa to hacked coffee machines, to shoot Nerf darts, and to control a projector. If you can actually get one of these Alexas-on-a-chip, all those projects could be done with one simple piece of hardware.

One Man’s Journey To Becoming His Own ISP

Thu, 09/20/2018 - 22:00

America is a BIG country. There are pockets all across the land where broadband Internet is slow-to-nonexistent, and many individuals are left with wireless cell service as their only means of internet connection. This is the situation [Brandt Kuykendall] found himself in upon moving his family to Dillon Beach, CA. So he started up his own fiber ISP. (YouTube, embedded below.)

“Cell phone service was really our only option, but that proved to be extremely expensive. My wife came home with the bill (of) $707, and that was the last straw.”

Despite being a mere two hours from the technological hub of San Francisco [Brandt] found himself dissatisfied with the level of service he was receiving from his provider. However, instead shredding his current contract altogether he decided to go directly to the source. He tracked down the location of the AT&T cell tower in his area and made every call he could in order to find out who was in charge of “opening up the taps”. Months of negotiation between AT&T and [Brandt] ensued and eventually resulted in a fiber line being installed directly into his garage.

The story didn’t stop there, because [Brandt] took it upon himself to spread the wealth by providing his neighbors with Wi-Fi access to the fiber optic line in exchange for a small monthly fee. Employing the use of industrial-grade small cell transmitters he essentially created a point-to-point network along his neighbors’ roofs. [Brandt’s] garage serves as the network monitoring hub enabling him to diagnose any traffic issues. What began as one man seeking decent internet speeds burgeoned into a journey to becoming his own ISP which now serves over 100 other residents of the Dillon Beach area.

[Via CBS San Francisco]

Fixing An IBM 1401 Computer To Get It Printing Again

Thu, 09/20/2018 - 19:00

The IBM 1401 is a classic computer which IBM marketed throughout the 1960s, late enough for it to have used transistors rather than vacuum tubes, which is probably a good thing for this story. For small businesses, it was often used as their main data processing machine along with the 1403 printer. For larger businesses with mainframes, the 1401 was used to handle the slower peripherals such as that 1403 printer as well as card readers.

Broken germanium transistor

The Computer History Museum in Mountain View, CA has two working 1401s as well as at least one 1403 printer, and recently whenever the printer printed out a line, the computer would report a “print check” error. [Ken Shirriff] was among those who found and fixed the problem and he wrote up a detailed blog entry which takes us from the first test done to narrow down the problem, through IBM’s original logic diagrams, until finally yanking out the suspect board and finding the culprit, a germanium transistor which likely failed due to corrosion and an emitter wire that doesn’t look solidly connected. How do they know that? In the typical [Ken]-and-company style which we love, they opened up the transistor and looked at it under a microscope. We get the feeling that if they could have dug even deeper then they would have.

If you’re unfamiliar with the work of this team who maintain the machines at the museum, you’ll want to read up on how they recently got a 1401 to run FORTRAN II code.

C64 Keyboard Helps Keep The Memory Alive

Thu, 09/20/2018 - 16:00

To say that the Commodore 64 was an important milestone in the history of personal computing is probably a bit of an understatement. For a decent chunk of the 1980s, it was the home computer, with some estimates putting the total number of them sold as high as 17 million. For hackers of a certain age, there’s a fairly good chance that the C64 holds a special spot in their childhood; perhaps even setting them on a trajectory they followed for the rest of their lives.

At the risk of showing his age, [Clicky Steve] writes in to tell us about the important role the C64 played in his childhood. He received it as a gift on his fifth birthday from his parents, and fondly remembers the hours he and his grandfather spent with a mail order book learning how to program it. He credits these memories with getting him interested in technology and electronic music. In an effort to keep himself connected to those early memories, he decided to build a modern keyboard with C64 keycaps.

As you might expect, the process started with [Steve] harvesting the caps from a real Commodore, in fact, the very same computer he received as a child. While the purists might shed a tear that the original machine was sacrificed to build this new keyboard, he does note that his C64 had seen better days.

Of course, you can’t just pull the caps off of C64 and stick them on a modern keyboard. [Steve] found the STLs for a 3D printable C64 to Cherry MX adapter on GitHub, and had 80 of them professionally printed as he doesn’t have access to an SLS printer. He reports the design works well, but that non-destructively removing the adapters from the caps once they are pressed into place probably isn’t going to happen; something to keep in mind for others who might be considering sacrificing their personal C64 for the project.

[Steve] installed the caps on a Preonic mechanical keyboard, which worked out fairly well, though he had to get creative with the layout as the C64 caps didn’t really lend themselves to the keyboard’s ortholinear layout. He does mention that switches a bit heavier than the Cherry MX Whites he selected would probably be ideal, but overall he’s extremely happy with his functional tribute to his grandfather.

If you’re more of a purist, you can always adapt the C64 keyboard directly to USB. Or go in the complete opposite direction and put a Raspberry Pi into a C64 carcass.

This Keyboard And Mouse Also Gives You A Workout

Thu, 09/20/2018 - 14:30

The Ergonomic Handheld Mouse / Keyboard Alternative from [Shervin Emami] is an all-in-one solution for your keyboarding and cursor moving needs.

The core of this build is a ‘grip-strengthening’ device that’s sold to guitarists. While the actual benefit of these devices for guitarists is questionable — there are a few anecdotes any music teacher will tell you about classical pianists ruining their hands with similar devices — the device itself can be converted into a fantastic chording keyboard. All you really need for a full-functioned keyboard is a few buttons in a rugged shell, and this ‘grip strengthener’ has that going in spades.

Underneath the plungers for each button [Shervin] installed a magnet and a magnetic sensor, meaning these buttons are analog, and shouldn’t wear out ever. With just a little bit of code on a Tiny BLE board these analog sensors can become a keyboard, a quadcopter controller, an interface for your VR setup, or anything else that can be controlled with a bunch of buttons.

Not to outdo himself, [Shervin] also managed to add some cursor control functionality to this build. This is done via the IMU onboard the Tiny BLE board, and by all accounts it works great.  You can check out a video of this build pretending it’s both a keyboard and a mouse below.

The HackadayPrize2018 is Sponsored by:





The Use and Abuse Of CT Scanners

Thu, 09/20/2018 - 13:01

David Mills is as a research scientist at the cutting edge of medical imaging. His work doesn’t involve the scanners you might find yourself being thrust into in a hospital should you be unfortunate enough to injure yourself. He’s working with a higher grade of equipment, he pushes the boundaries of the art with much smaller, very high resolution CT scanners for research at a university dental school.

He’s also a friend of Hackaday and we were excited for his talk on interesting uses for CT scanners at EMF Camp this summer. David takes us into that world with history of these tools, a few examples of teeth and bone scans, and then delves into some of the more unusual applications to which his very specialist equipment has been applied. Join me after the break as we cover the lesser known ways to put x-ray technology to work.

CT Scanning Old Documents

What do acorns and CT scanners have to do with old documents? Printed records degrade over time and eventually, just the act of unfurling a scroll can spell doom for ancient artifacts. Left untouched, the information is still there and clever use of x-rays can read it.

Flythrough of a CT Scannned scroll via the Apocalypto Project

It turns out that fruits like acorns were the source material for the ink used on many historical documents. David uses a scan of an acorn colonised by parasitic gall wasps to illustrate how mineralisation in an acorn can be easily seen in a CT scan. The same should be possible with the mineralisation of inks in the documents.

The first tests of this technique were performed on a set of rolled-up parchment mediaeval manorial records from Norfolk, England. They were able to produce a readable virtual unrolling! After this breakthrough they were approached by a postal museum in the Netherlands with a set of 17th-century unopened letters, an ongoing project that presents a particular challenge due to contamination from both powdered seashells used by the authors to absorb surplus ink, and from lead in the wax seals used upon the envelopes.

The Salvation of Classic British Comedy

Earlier this year we covered the discovery and recovery of some very old, very rare, and very damaged film. That was some of David Mills’ work! It seems in the world of historical scanning that once you have a success, word gets around and you are besieged with interesting artifacts.

The BBC had some heavily degraded triacetate film stock containing a lost episode from the British comedy duo Eric Morecambe and Ernie Wise, and wanted to retrieve what they could from it. To say it was in awful condition is an understatement.

This type of film releases acetic acid as it decomposes, further accelerating damage to the film. As with the written scrolls, trying to unroll this film would destroy it. David’s team first used a laser cutter to segment the fused film reel into pieces small enough for the scanner. They have retrieved recognisable images from it, but there is still much work to do. In conjunction with a BBC team they are developing software to aid in the post processing to help remove distortion, and soon hope to revive one of those British traditions: a new Morecambe and Wise Christmas TV show.

Sometimes You Just Have to Have Some Fun

Of course like any of us, having access to rare and awesome tools leads to some fun side projects. David x-rays his lunch, and has competitions on social media to guess what he’s eating today. Wondering what an x-ray emitter looks like while running, they’ve scanned an iPhone with its camera rolling. The resulting video came complete with white spots from x-rays interfering with the camera. He also mentions imaging a non-functional pound shop USB hub that proved to have all ports wired in parallel and a black epoxy blob with no chip underneath. It seems a pound only goes so far.

Most of us will never encounter a CT scanner, but David’s talk gives us an entertaining and informative journey into this exciting field. Check it out, it’s a worthy way to spend half an hour.

Golf Practice Made Easy with Robotics

Thu, 09/20/2018 - 11:30

When you think of sports, you usually think of something that takes a lot of physical effort. Golf is a bit different. Sure, you can get some walking in if you don’t take a cart. But mostly golfing is about coordination and skill and less about physical exertion. Until you want to practice driving. You hit a bucket of balls and then you have to go walk around and pick them up. Unless you have help, of course. In particular, you can delegate the task to a robot.

The robot that [webzuweb] built looks a little like a plywood robot vacuum. However, instead of suction, it uses some plywood disks to lift the balls and deposit them in a hopper. The electronics consist of an Arduino and an Orange Pi Lite. A GPS tells the robot where it is and it develops a search pattern based on its location.

Although [webzuweb] notes he isn’t done with the project, it looks pretty good. He describes the software, but it doesn’t appear to be posted anywhere. However, he does describe its operation and how it changes mode based on its current state.

We can’t decide if golf is really a sport or more of a game. We were surprised to read that if you carry your own bag and don’t use a cart you can burn about 360 calories an hour which is somehow more than a gymnast burns, which hardly seems possible.

Of course, most people use a cart and a caddy, so they aren’t going to burn those calories. If you are in the market for a cool cart, we liked this one. Or, perhaps you’d like one with more power.

Space Garbage Truck Passes its First Test

Thu, 09/20/2018 - 10:01

Back in April we reported on the successful launch of the SpaceX Falcon 9 rocket to the International Space Station which carried, along with supplies and experiments for the orbiting outpost, the RemoveDEBRIS spacecraft. Developed by the University of Surrey, RemoveDEBRIS was designed as the world’s first practical demonstration of what’s known as Active Debris Removal (ADR) technology. It included not only a number of different technologies for ensnaring nearby objects, it even brought along deployable targets to use them on.

Orbital debris (often referred to simply as “space junk”) is a serious threat to all space-faring nations, and has become even more pressing of a concern as the cost of orbital launches have dropped precipitously over the last few years, accelerating number and frequency of new objects entering orbit. The results of these first of their kind tests have therefore been hotly anticipated, as the technology to actively remove debris from Low Earth orbit (LEO) is seen by many in the industry to be a key element of expanding access to space for commercial purposes.

Six months after its arrival in space we’ve now starting to see the first results of the groundbreaking tests performed by the RemoveDEBRIS spacecraft, and so far it’s very promising.

Everything’s Harder in Space

To test debris removal technology, you need some “debris” to target. To that end, RemoveDEBRIS deployed a CubeSat target and allowed it to drift approximately seven meters away. Once the target had moved to the prescribed distance, a net developed by Airbus was fired at it. When the center of the net struck the CubeSat, weights along its edges wrapped around the target, completely ensnaring it.

While arguably an ancient technology, even the simple act of throwing a net becomes infinitely more difficult when you’re 300 km above the Earth’s surface. Director of the Surrey Space Center, Professor Guglielmo Aglietti, said: “While it might sound like a simple idea, the complexity of using a net in space to capture a piece of debris took many years of planning, engineering and coordination between the Surrey Space Centre, Airbus and our partners – but there is more work to be done. These are very exciting times for us all.”

One Small Step of a Longer Journey Some of the larger objects NASA is tracking in orbit

Capturing a free-flying object with a net launched from a spacecraft is a neat trick to be sure, and like the upcoming Japanese demonstration of space elevator technology, is a historic first. But it’s only one part of addressing the space junk epidemic in LEO. What do you do with the target once you’ve caught it?

Soon RemoveDEBRIS will demonstrate technologies for pulling an ensnared object out of orbit, such as a drag sail. This lightweight expandable structure can be attached to the captured object, greatly increasing the atmospheric drag acting on it. As the additional drag lowers the object’s speed, its orbit will decay much more rapidly than it would normally in the thin upper atmosphere.

The University of Surrey hasn’t solved the problem of space junk just yet, but this early success is still something to be excited about. Especially for those who’ve had first hand experience with the danger it poses our spacecraft and astronauts.

“It’s great to see the net deployed and trying out various ways to triage the situation” says NASA’s Michael Interbartolo, former member of the Space Shuttle’s Guidance, Navigation, and Control (GNC) Flight Control team. “Anything we can do to remove that debris, from tools lost during a space walk or bolts from a separation stage or a breakup of a long dead satellite, the safer things will be for the Space Station, astronauts or other spacecraft.”

Show that Sega Saturn Save Battery Who’s Boss

Thu, 09/20/2018 - 07:00

Breaking out the Sega Saturn out of the closet for a hit of 90’s nostalgia comes with its own set of compromises: the wired controllers, the composite video, and worst of all that dead CR2032 battery behind the backdoor. Along with the death of that battery went your clock and all those precious hours put into your game save files. While the bulk of us kept feeding the insatiable SRAM, a friendly Canadian engineer named [René] decided to fix the problem for good with FRAM.

The issue with the battery-backed memory in the Saturn stems from the particularly power-hungry factory installed SRAM chip. Normally when the console is plugged-in to a main power source the CR2032 battery is not in use, though after several weeks in storage the battery slowly discharges. [René’s] proposed solution was to use a non-volatile form of RAM chip that would match the pinout of the factory SRAM as close as possible. This would allow for easier install with the minimum number of jumper wires.

Enter the FM1808 FRAM chip complete with a whopping 256 kB of addressable memory. The ferroelectric chip operates at the same voltage as the Saturn’s factory SRAM, and has the added benefit of being able to use a read/write mode similar to that of the Saturn’s original memory chip. Both chips conform to a DIP-28 footprint, and only a single jumper wire on pin 22 was required to hold the FM1808 chip’s output-enable signal active-low as opposed to the active-high enable signal on the Saturn’s factory memory chip. The before and after motherboard photos are below:

After a quick test run of multiple successful read and writes to memory, [René] unplugged his Saturn for a couple days and found that his save files had been maintained. According to the FM1808 datasheet, they should be there for the next 45 years or so. The only downside to the upgrade is that the clock & calendar settings were not maintained upon boot-up and reset to the year 1996. But that’s nothing a bit of button-mashing through couldn’t solve, because after all wasn’t the point of all this to relive a piece of the 90s?

For more Sega Saturn goodness, check out how the Sega Saturn was finally cracked after 20 years.

Learn ARM Assembly with the Raspberry Pi

Thu, 09/20/2018 - 04:00

We live in a time when you don’t have to know assembly language to successfully work with embedded computers. The typical processor these days has resources that would shame early PCs and some of the larger ones are getting close to what was a powerful desktop machine only a few years ago. Even so, there are some cases where you really want to use assembly language. Maybe you need more speed. Or maybe you need very precise control over timing. Maybe you just like the challenge. [Robert G. Plantz] from Sonoma State University has an excellent book online titled “Introduction to Computer Organization: ARM Assembly Langauge Using the Raspberry Pi.” If you are interested in serious ARM assembly language, you really need to check out this book.

If you are more interested in x86-64 assembly and Linux [Plantz] has you covered there, too. Both books are free to read on the Internet, and you can pick up a printed version of the Linux book for a small payment if you want.

Since these are meant to be college textbooks, they aren’t quick reads, but they also are a lot more detailed than the typical blog post about how to do assembly. Even if you don’t want to read it cover to cover, you might find some of the specific write-ups about debugging and interacting with C code useful.

The Raspberry Pi book is written using a system called PreTeXt which looks interesting. We liked how the output looked, although it would be handy if you could dump it to a PDF for your book reader.

We were very impressed by the comprehensive nature of both books. We’ve looked at very simple and brief introductions before. We’ve even done our own short takes about Linux and assembly with C.

Touch Anything And Everything

Thu, 09/20/2018 - 01:00

Powering IoT devices is often a question of batteries or mains power, but in rare exceptions to this rule there is no power supply (PDF Warning). At the University of Wisconsin-Madison and the University of California, San Diego, researchers have gone the extra mile to make advanced backscatter devices, and these new tags don’t need the discrete components we have seen in previous versions. They are calling it LiveTag, and it doesn’t need anything aside from a layer of foil printed or etched on a flexible ceramic-PTEF laminate. PTEF is mostly seen in the RF sector as a substrate for circuit boards.

We have seen some of the wild creations with wifi backscatter that range from dials to pushbuttons. RF backscatter works by modulating the RF signals in which we are continuously swimming. Those radio waves power the device and disrupt the ambient signals, which disruption can be detected by a receiver. With a BOM that looks like a statement more than a list, integration with many devices becomes a cost-effective reality. Do not however broadcast important data because you cannot expect great security from backscatter.

[Via IEEE Spectrum]

Advanced Techniques For Using Git With KiCAD

Wed, 09/19/2018 - 22:00

For most developers “distributed version control” probably means git. But by itself git doesn’t work very well with binary files such as images, zip files and the like because git doesn’t know how to make sense of the structure of an arbitrary blobs of bytes. So when trying to figure out how to track changes in design files created by most EDA tools git doesn’t get the nod and designers can be trapped in SVN hell. It turns out though KiCAD’s design files may not have obvious extensions like .txt, they are fundamentally text files (you might know that if you’ve ever tried to work around some of KiCAD’s limitations). And with a few tweaks from [jean-noël]’s guide you’ll be diffing and merging your .pro’s and .sch’s with aplomb.

There are a couple sections to the document (which is really meant as an on boarding to another tool, which we’ve gotten to in another post). The first chunk describes which files should be tracked by the repo and which the .gitignore can be configured to avoid. If that didn’t make any sense it’s worth the time learning how to keep a clean repo with the magic .gitignore file, which git will look for to see if there are any file types or paths it should avoid staging.

The second section describes how you can use two nifty git features, cleaning and smudging, to dynamically modify files as they are checked in and out of the repo. [jean-noël]’s observation is that certain files get touched by KiCAD even if there are no user facing changes, which can clutter patch sets with irrelevant changes. His suggested filters prevent this by stripping those changes out as files get checked in. Pretty slick.

Electric Wheelbarrow Makes Hauling Big Loads Easier

Wed, 09/19/2018 - 19:00

Gardening involves a depressing amount of physical activity: haul this over here, dump it there and then cover it with this. Things like wheelbarrows are still damn hard work, especially for people like who are somewhat physically compromised. That’s why we love this build from [Karl Gesslein]. He usually makes electronic bikes, adding motors to bicycles to roam the streets faster. But this time he applied his expertise to a wheelbarrow. He added a 3000W motor to the wheelbarrow, which drives the front wheel when triggered by the accelerator on the handle.

The project is a bit more sophisticated than sticking a motor on the wheel, though: [Karl] details how he chose the wheelbarrow to motorize, going with a single-wheel wheelbarrow than the two- or -four-wheel models he initially considered, because it is easier to navigate. He drilled holes in the front wheel and added a chain wheel, mounted at several points to stop the cheap metal wheel the barrow came with from warping. This chain wheel is driven by a $350 Luna Cyclone Mid Drive motor driven from an Ego battery mounted behind the carrier. He admits this motor is rather more than a wheelbarrow really needs, saying that it “provides more power than you’re probably ever going to need, even when wheeling 500lbs+ up a very steep incline…. at full throttle still goes faster than I can run.” Perhaps the next phase could include a remote control and robotic arm so it can load (and unload) itself.

Voice Controlled Stereo Balance With ESP8266

Wed, 09/19/2018 - 16:00

A stereo setup assumes that the listener is physically located between the speakers, that’s how it can deliver sound equally from both sides. It’s also why the receiver has a “Balance” adjustment, so the listener can virtually move the center point of the audio by changing the relative volume of the speakers. You should set your speaker balance so that your normal sitting location is centered, but of course you might not always be in that same position every time you listen to music or watch something.

[Vije Miller] writes in with his unique solution to the problem of the roving listener. He’s come up with a system that can adjust the volume of his speakers without having to touch the receiver’s setup, in fact, he doesn’t have to touch anything. By leveraging configurable voice control software running on his computer, his little ESP8266-based devices do all the work.

Each speaker has its own device which consists of a NodeMCU ESP8266 and X9C104 digital potentiometer inside of a 3D printed case. The audio terminal block on the gadget allows him to connect it inline between the speaker and the receiver, giving [Vije] the ability to adjust the volume through software. The source code, which he’s posted on the Hackaday.io project page, uses a very simple REST-style API to change speaker volume based on HTTP requests which hit the ESP8266’s IP address.

The second part of the project is a computer running VoiceAttack, which lets [Vije] assign different actions based on what the software hears. When he says the appropriate command, the software goes through and fires off HTTP requests to the nodes in the system. Everything is currently setup for two speakers, but it shouldn’t be too difficult to expand to more speakers (or even rooms) with some adjustment to the software.

It’s not the first voice controlled speaker we’ve ever seen, but it does solve a very specific problem in a unique way. We’d be interested in seeing the next logical step, which would see this technology integrated into the speaker itself.

‘SHE BON’ is an Artful, Wearable, Sensual, Sensing Platform

Wed, 09/19/2018 - 14:30

SHE BON (that’s the French bon, or “good”) is an ambitious project by [Sarah Petkus] that consists of a series of wearable electronic and mechanical elements which all come together as a system for a single purpose: to sense and indicate female arousal. As a proponent of increased discussion and openness around the topic of sexuality, [Sarah]’s goal is to take something hidden and turn it into something obvious and overt, while giving it a certain artful flair in the process.

The core of the system is a wearable backpack in the shape of a heart, from which all other sensors and feedback elements are connected. A lot of thought has gone into the design of the system, ensuring that the different modules have an artistic angle to their feedback while also being comfortable to actually wear, and [Sarah] seems to have a knack for slick design. Some of the elements are complete and some are still in progress, but the system is well documented with a clear vision for the whole. It’s an unusual and fascinating project, and was one of the finalists selected in the Human Computer Interface portion of the 2018 Hackaday Prize. Speaking of which, the Musical Instrument Challenge is underway, so be sure check it out!

The HackadayPrize2018 is Sponsored by:





Industrial 3D Printing Uses Layers Like We’ve Never Seen Before

Wed, 09/19/2018 - 13:01

We’ve seen FDM printers lay down layers by extruding plastic in a line. We’ve seen printers use sintering and lithography to melt or cure one layer at a time before more print medium moves into place for the next layer. What we’ve never seen before is a printer like this that builds parts from distinct layers of substrate.

At the International Manufacturing Technology Show last week I spoke with Eric Povitz of Impossible Objects. The company is using a “sheet lamination process” that first prints each layer on carbon fiber or fiberglass, then uses a hydraulic press and an oven to bake the part into existence before bead-blasting the excess substrate away. Check out my interview with Eric and join me below for more pictures and details.

It’s incredible to see a process that prints the layers individually, using holes to align all of the layers on rods before fusing them together. I’m told the accuracy and resolution is quite good but don’t have a metric to back that up. The accuracy is best running parallel to the layers, so wide flat parts will yield consistent results. Very tall parts that require many layers will eventually see variations in accuracy.

The substrate used in this process is quite thin and wispy. The printer itself moves the substrate through a process that uses inkjet printing to deposit a binder. Powdered thermoplastic is then applied where it sticks to the binder and the excess is reclaimed. The layers are automatically stacked in order at the end of the machine.

The second half of the process compresses the layers in a press, and bakes them to melt the thermoplastic into a solid. Bead blasting is then used to remove the excess substrate. Depending on your application, the part is now ready to used, or can be further processed through machining, adding threaded inserts, or other processes common to working with composites.

There’s a range of materials available for use with this technique. They depend on what substrate and thermoplastic is chosen. One of the more interesting examples they had on hand is made of carbon fiber reinforced polyether ether ketone (PEEK). This material has excellent heat resistance, and feels like metal when held in your hand. This particular demo is a jig for holding PCBs during wave soldering.

What you end up with are composite parts that have very different properties from those printed in powder or resin processes. These parts are reinforced by the fibers of the substrate and will certainly find eager customers in the manufacturing industry for applications that aren’t being met by other additive technologies.

If you loved this, make sure you also check out the direct metal printing equipment we saw at IMTS.

Join Hackaday For A Night Of Pre-Maker Faire Hacks

Wed, 09/19/2018 - 12:01

This weekend is the World Maker Faire in New York, and Hackaday will be there looking at the latest and greatest projects from makers around the globe. We’ll also be buying bottles of water for five dollars, but that’s another story entirely.

As always, this year’s World Maker Faire will be held at the wonderful New York Hall of Science, and the lineup is spectacular. There will be cosplay, and Adam Savage will be there with a half dozen Junior Mythbusters. There will be a twenty-six foot tall hydraulic hand trucked in from Burning Man. You’re looking at the greatest event in STEAM education since the Bay Area Maker Faire last May.

Hackaday has a fantastic New York community and we’re holding a meetup this Thursday to sync up with Maker Faire. Guess what?  You’re invited!

We’re teaming up with our friends at Kickstarter to bring you an awesome night of hardware builds, music hacks, snacks, and more. While this is an informal event, we do have a few people who will be bringing their latest hacks to show off. Nick Chelyapov, a designer turned gear head who designed an Arduino-based synthesizer and drum machine. This isn’t a toy, but it’s also not a complicated mess of patch cables and eurorack modules. The Bitty is a real instrument that’s easy enough for anyone to pick up and make bleep bloops.

Also confirmed for this meetup is Nick Yulman, an artist who works with sound and interactive media in a variety of contexts. He’s gearing up to install his robotic musical instruments in the Areté Gallery in Greenpoint, Brooklyn. But this week he’ll be showing us how musical robots helped him stop worrying and love digital music.

This isn’t an event to be missed. You can RSVP for the event over on Eventbrite, and be sure to bring whatever project you’re working on. It’s going to be an entire night of drinks and hacks, just the thing before Maker Faire really gets rolling. Once the weekend hits, find us at the Faire; several of us from the Hackaday crew will be wandering the grounds looking for awesome hardware projects. Stephen Tranovich is even giving a talk about the Hackaday Prize on Sunday at 11. See you at the Faire!

Braille on a Tablet Computer

Wed, 09/19/2018 - 11:00

Signing up for college classes can be intimidating, from tuition, textbook requirements, to finding an engaging professor. Imagine signing up online, but you cannot use your monitor. We wager that roughly ninety-nine percent of the hackers reading this article have it displayed on a tablet, phone, or computer monitor. Conversely, “Only one percent of published books is available in Braille,” according to [Kristina Tsvetanova] who has created a hybrid tablet computer with a Braille display next to a touch-screen tablet running Android. The tablet accepts voice commands for launching apps, a feature baked right into Android. The idea came to her after helping a blind classmate sign up for classes.

Details on the mechanism are not clear, but they are calling it smart liquid, so it may be safe to assume hydraulic valves control the raised dots, which they call “tixels”. A rendering of the tablet can be seen below the break. The ability to create a full page of braille cells suggest they have made the technology pretty compact. We have seen Braille written on PCBs, a refreshable display based on vibrator motors, and a nicely sized Braille keyboard that can fit on the back of a mobile phone.

Pages